Machine 机器入门

创建于 2024-12-03 / 39
字体: [默认] [大] [更大]

数据集

在计算机中,数据集指的是任何数据集合。它可以是从数组到完整数据库的任何内容。

一个数组的例子:

[99,86,87,88,111,86,103,87,94,78,77,85,86]

一个数据库的例子:

CarnameColorAgeSpeedAutoPass
BMWred599Y
Volvoblack786Y
VWgray887N
VWwhite788Y
Fordwhite2111Y
VWwhite1786Y
Teslared2103Y
BMWblack987Y
Volvogray494N
Fordwhite1178N
Toyotagray1277N
VWwhite985N
Toyotablue686Y

通过查看数组,我们可以猜测平均值可能约为 80 或 90,并且我们还可以确定最大值和最小值,但是我们还能做什么?

通过查看数据库,我们可以看到最受欢迎的颜色是白色,最老的车龄是 17 年,但是如果仅通过查看其他值就可以预测汽车是否具有 AutoPass,该怎么办?

这就是机器学习的目的!分析数据并预测结果!

在机器学习中,通常使用非常大的数据集。在本教程中,我们会尝试让您尽可能容易地理解机器学习的不同概念,并将使用一些易于理解的小型数据集。


数据类型

如需分析数据,了解我们要处理的数据类型非常重要。

我们可以将数据类型分为三种主要类别:

  • 数值(Numerical)
  • 分类(Categorical)
  • 序数(Ordinal)

数值(Numerical) 数据是数字,可以分为两种数值类别:

  • 离散数据(Discrete Data)
    - 限制为整数的数字。例如:经过的汽车数量。
  • 连续数据(Continuous Data)
    - 具有无限值的数字。例如:一件商品的价格或一件商品的大小。

分类数据 是无法相互度量的值。例如:颜色值或任何 yes/no 值。

序数数据 类似于分类数据,但可以相互度量。示例:A 优于 B 的学校成绩,依此类推。

通过了解数据源的数据类型,您就能够知道在分析数据时使用何种技术。

在下一章中,您将学习有关统计和分析数据的更多知识。



0 人点赞过